
CS6200  
Information Retrieval

David Smith
College of Computer and Information Science

Northeastern University

Indexing Process

!2

Indexes

Storing document information for faster queries

Indexes | Index Compression | Index Construction | Query Processing
!3

Indexes

• Indexes are data structures designed to make
search faster
– The main goal is to store whatever we need in order

to minimize processing at query time

• Text search has unique requirements, which leads
to unique data structures

• Most common data structure is inverted index
– A forward index stores the terms for each document

• As seen in the back of a book

– An inverted index stores the documents for each term
• Similar to a concordance

!4

A Shakespeare Concordance

!5

Indexes and Ranking

• Indexes are designed to support search
– faster response time, supports updates

• Text search engines use a particular form of
search: ranking
– documents are retrieved in sorted order according

to a score computing using the document
representation, the query, and a ranking algorithm

• What is a reasonable abstract model for
ranking?
– This will allow us to discuss indexes without

deciding the details of the retrieval model
!6

Abstract Model of Ranking

!7

More Concrete Model

!8

Inverted Index

• Each index term is associated with an
inverted list
– Contains lists of documents, or lists of word

occurrences in documents, and other
information

– Each entry is called a posting
– The part of the posting that refers to a specific

document or location is called a pointer
– Each document in the collection is given a

unique number
– Lists are usually document-ordered (sorted by

document number)
!9

Example “Collection”

!10

Simple Inverted  
Index

!11

Inverted Index
with counts

!
• supports better

ranking algorithms
!

!12

Inverted Index
with positions

!
• supports

proximity matches

!13

Proximity Matches

• Matching phrases or words within a
window
– e.g., "tropical fish", or “find tropical

within 5 words of fish”

• Word positions in inverted lists make
these types of query features efficient
– e.g.,

!14

Fields and Extents

• Document structure is useful in search
– field restrictions
• e.g., date, from:, etc.

– some fields more important
• e.g., title

• Options:
– separate inverted lists for each field type
– add information about fields to postings
– use extent lists

!15

Extent Lists

• An extent is a contiguous region of a
document
– represent extents using word positions
– inverted list records all extents for a given

field type
– e.g.,

extent list
!16

Other Issues

• Precomputed scores in inverted list
– e.g., list for “fish” [(1:3.6), (3:2.2)], where

3.6 is total feature value for document 1
– improves speed but reduces flexibility

• Score-ordered lists
– query processing engine can focus only on the

top part of each inverted list, where the
highest-scoring documents are recorded

– very efficient for single-word queries

!17

Index Compression

Managing index size efficiently

Indexes | Index Compression | Index Construction | Query Processing
!18

Compression

• Inverted lists are very large
– e.g., 25-50% of collection for TREC collections

using Indri search engine
– Much higher if n-grams are indexed

• Compression of indexes saves disk and/or
memory space
– Typically have to decompress lists to use them
– Best compression techniques have good

compression ratios and are easy to decompress
• Lossless compression – no information lost

!19

Compression

• Basic idea: Common data elements use
short codes while uncommon data
elements use longer codes
– Example: coding numbers
!
• number sequence:
!
• possible encoding:
!
• encode 0 using a single 0:
!
• only 10 bits, but...

!20

Compression Example

• Ambiguous encoding – not clear how to
decode

• another decoding:
!
• which represents:
!
• use unambiguous code:
!
• which gives:

!21

Compression and Entropy

• Entropy measures “randomness”
– Inverse of compressability
!
!
!

– Log2: measured in bits
– Upper bound: log n
– Example curve for binomial

H (X) ≡ − p(X = xi
i=1

n

∑) log2 p(X = xi)

!22

Compression and Entropy

• Entropy bounds compression rate
– Theorem: H(X) ≤ E[|encoded(X)|]
– Recall: H(X) ≤ log(n)
– n is the size of the domain of X

• Standard binary encoding of integers optimizes
for the worst case where choice of numbers is
completely unpredictable

• It turns out, we can do better. At best:
– H(X) ≤ E[|encoded(X)|] < H(X) + 1
– Bound achieved by Huffman codes

!23

Delta Encoding

• Word count data is good candidate for
compression
–many small numbers and few larger numbers
– encode small numbers with small codes

• Document numbers are less predictable
– but differences between numbers in an

ordered list are smaller and more predictable
• Delta encoding:
– encoding differences between document

numbers (d-gaps)
–makes the posting list more compressible

!24

Delta Encoding

• Inverted list (without counts)
!

• Differences between adjacent numbers
!

• Differences for a high-frequency word are
easier to compress, e.g.,
!

• Differences for a low-frequency word are large,
e.g.,

!25

Bit-Aligned Codes

• Breaks between encoded numbers can
occur after any bit position

• Unary code
– Encode k by k 1s followed by 0
– 0 at end makes code unambiguous

!26

Unary and Binary Codes

• Unary is very efficient for small numbers
such as 0 and 1, but quickly becomes very
expensive
– 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary

• Binary is more efficient for large numbers,
but it may be ambiguous

!27

Elias-γ Code
• More efficient when smaller numbers are more common
• Can handle very large integers
• To encode a number k, compute
!
!

• kd is number of binary digits, encoded in unary

!28

Elias-δ Code

• Elias-γ code uses no more bits than unary,
many fewer for k > 2
– 1023 takes 19 bits instead of 1024 bits using

unary

• In general, takes 2⌊log2k⌋+1 bits
• To improve coding of large numbers, use

Elias-δ code
– Instead of encoding kd in unary, we encode kd + 1

using Elias-γ
– Takes approximately 2 log2 log2 k + log2 k bits

!29

Elias-δ Code

• Split kd into:

!
!
– encode kdd in unary, kdr in binary, and kr in binary

!30

!31

Byte-Aligned Codes

• Variable-length bit encodings can be a
problem on processors that process bytes

• v-byte is a popular byte-aligned code
– Similar to Unicode UTF-8

• Shortest v-byte code is 1 byte
• Numbers are 1 to 4 bytes, with high bit 1

in the last byte, 0 otherwise

!32

V-Byte Encoding

!33

V-Byte Encoder

!34

V-Byte Decoder

!35

Compression Example

• Consider inverted list with counts &
positions — (doc, count, positions)
!

• Delta encode document numbers and
positions:
!

• Compress using v-byte:

!36

Skipping

• Search involves comparison of inverted
lists of different lengths
– Finding a particular doc is very inefficient
– “Skipping” ahead to check document numbers

is much better
– Compression makes this difficult
• Variable size, only d-gaps stored

• Skip pointers are additional data structure
to support skipping

!37

Skip Pointers

• A skip pointer (d, p) contains a document
number d and a byte (or bit) position p
– Means there is an inverted list posting that

starts at position p, and the posting before it
was for document d

skip pointers
Inverted list

!38

Skip Pointers

• Example
– Inverted list of doc numbers

!
– D-gaps

!
– Skip pointers

!39

Auxiliary Structures

• Inverted lists often stored together in a single file
for efficiency
– Inverted file

• Vocabulary or lexicon
– Contains a lookup table from index terms to the byte

offset of the inverted list in the inverted file
– Either hash table in memory or B-tree for larger

vocabularies
• Term statistics stored at start of inverted lists
• Collection statistics stored in separate file
• For very large indexes, distributed filesystems are

used instead.
!40

Index Construction

Algorithms for indexing

Indexes | Index Compression | Index Construction | Query Processing
!41

Index Construction

• Simple in-memory indexer

!42

Merging

• Merging addresses limited memory problem
– Build the inverted list structure until memory

runs out
– Then write the partial index to disk, start

making a new one
– At the end of this process, the disk is filled

with many partial indexes, which are merged

• Partial lists must be designed so they can
be merged in small pieces
– e.g., storing in alphabetical order

!43

Merging

!44

Distributed Indexing

• Distributed processing driven by need to
index and analyze huge amounts of data
(i.e., the Web)

• Large numbers of inexpensive servers used
rather than larger, more expensive
machines

• MapReduce is a distributed programming
tool designed for indexing and analysis
tasks

!45

Example

• Given a large text file that contains data
about credit card transactions
– Each line of the file contains a credit card

number and an amount of money
– Determine the number of unique credit card

numbers
• Could use hash table – memory problems
– counting is simple with sorted file

• Similar with distributed approach
– sorting and placement are crucial

!46

MapReduce
• Distributed programming framework that

focuses on data placement and distribution
• Mapper
– Generally, transforms a list of items into another

list of items of the same length

• Reducer
– Transforms a list of items into a single item
– Definitions not so strict in terms of number of

outputs

• Many mapper and reducer tasks on a cluster of
machines

!47

MapReduce
• Basic process
– Map stage which transforms data records into

pairs, each with a key and a value
– Shuffle uses a hash function so that all pairs with

the same key end up next to each other and on the
same machine

– Reduce stage processes records in batches, where
all pairs with the same key are processed at the
same time

• Idempotence of Mapper and Reducer provides
fault tolerance
– multiple operations on same input gives same

output
!48

MapReduce

!49

Example

!50

Indexing Example

!51

Result Merging

• Index merging is a good strategy for
handling updates when they come in large
batches

• For small updates this is very inefficient
– instead, create separate index for new

documents, merge results from both searches
– could be in-memory, fast to update and search

• Deletions handled using delete list
– Modifications done by putting old version on

delete list, adding new version to new
documents index

!52

Query Processing

Using the index to search efficiently

Indexes | Index Compression | Index Construction | Query Processing
!53

Query Processing

• Document-at-a-time
– Calculates complete scores for documents by

processing all term lists, one document at a
time

• Term-at-a-time
– Accumulates scores for documents by

processing term lists one at a time
• Both approaches have optimization

techniques that significantly reduce time
required to generate scores

!54

Document-At-A-Time

!55

Pseudocode Function Descriptions
• getCurrentDocument()

– Returns the document number of the current posting of the
inverted list.

• skipForwardToDocument(d)
– Moves forward in the inverted list until getCurrentDocument() <= d.

This function may read to the end of the list.
• movePastDocument(d)

– Moves forward in the inverted list until getCurrentDocument() < d.
• moveToNextDocument()

– Moves to the next document in the list. Equivalent to
movePastDocument(getCurrentDocument()).

• getNextAccumulator(d)
– returns the first document number d' >= d that has already has an

accumulator.
• removeAccumulatorsBetween(a, b)

– Removes all accumulators for documents numbers between a and b.
Ad will be removed iff a < d < b.

!56

Document-At-A-Time
Get best k documents for query Q from index I, with query score function g() and
document score function f(). Process one document at a time.

!57

Term-At-A-Time

!58

Term-At-A-Time
Get best k documents for query Q from index I, with query score function g()
and document score function f(). Process one term at a time.

!59

Optimization Techniques

• Term-at-a-time uses more memory for
accumulators, but accesses disk more
efficiently

• Two classes of optimization
– Read less data from inverted lists
• e.g., skip lists
• better for simple feature functions

– Calculate scores for fewer documents
• e.g., conjunctive processing
• better for complex feature functions

!60

Conjunctive
Term-at-a-Time

!61

Conjunctive
Document-at-a-Time

!62

Threshold Methods

• Threshold methods use the number of top-
ranked documents needed (k) to optimize
query processing
– for most applications, k is small

• For any query, there is a minimum score that
each document needs to reach before it can
be shown to the user
– score of the kth-highest scoring document
– gives threshold τ
– optimization methods estimate τ′ to ignore

documents

!63

Threshold Methods
• Example: find the top 2 documents

– Query term weights: [0.7, 0.1, 0.2]
– Doc term weights are between 0 and 1
– Ranker uses dot product of query and doc weights

• Doc 1 term weights: [0.3, 0.4, 0.5]
– Score: 0.3*0.7 + 0.4*0.1 + 0.5*0.2 = 0.35

• Doc 2 term weights: [0.5, 0.1, 0.1]
– Score: 0.5*0.7 + 0.1*0.1 + 0.1*0.2 = 0.38

• Doc 3 term weights: [0.01, 1, 1]
– Score: 0.01*0.7 +1*0.1 + 1*0.2 = 0.307
– We know from the first term that doc 3 can’t possibly get a

high enough score to beat docs 1 and 2
– We can discard the document after looking at just one

term
!64

Threshold Methods

• For document-at-a-time processing, use score
of lowest-ranked document so far for τ′
– for term-at-a-time, have to use kth-largest score in

the accumulator table

• MaxScore method compares the maximum
score that remaining documents could have to
τ′
– uses the maximum score observed in term posting

lists to estimate the best possible document score
– safe optimization in that ranking will be the same

without optimization (cf. A* search)
!65

MaxScore Example

• Indexer computes µtree

– maximum score any document got for term “tree”
• Assume k =3, τ′ is lowest score for entire query after

first three docs
• Likely that τ ′ > µtree because of additional terms

– τ ′ is the score of a document that contains both query terms
• Can safely skip over all gray postings, which have

scores < µtree
!66

Other Approaches

• Early termination of query processing
– ignore high-frequency word lists in term-at-a-

time
– ignore documents at end of lists in doc-at-a-time
– unsafe optimization

• List ordering
– order inverted lists by quality metric (e.g.,

PageRank) or by partial score
–makes unsafe (and fast) optimizations more

likely to produce good documents
!67

Structured Queries

• Query language can support specification
of complex features
– similar to SQL for database systems
– query translator converts the user’s input

into the structured query representation
– Galago query language is the example used

here
– e.g., Galago query:

!68

Evaluation Tree for Structured Query

!69

Distributed Evaluation

• Basic process
– All queries sent to a director machine
– Director then sends messages to many index

servers
– Each index server does some portion of the query

processing
– Director organizes the results and returns them to

the user
• Two main approaches
– Document distribution

• by far the most popular
– Term distribution

!70

Distributed Evaluation

• Document distribution
– each index server acts as a search engine for

a small fraction of the total collection
– director sends a copy of the query to each of

the index servers, each of which returns the
top-k results

– results are merged into a single ranked list by
the director

• Collection statistics should be shared for
effective ranking

!71

Distributed Evaluation
• Term distribution
– Single index is built for the whole cluster of

machines
– Each inverted list in that index is then assigned to

one index server
• in most cases the data to process a query is not stored

on a single machine

– One of the index servers is chosen to process the
query
• usually the one holding the longest inverted list

– Other index servers send information to that server
– Final results sent to director

!72

Caching

• Query distributions similar to Zipf
– About ½ each day are unique, but some are very

popular
• Caching can significantly improve

effectiveness
– Cache popular query results
– Cache common inverted lists

• Inverted list caching can help with unique
queries

• Cache must be refreshed to prevent stale
data

!73

