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Indexes

• Indexes are data structures designed to make 
search faster 
– The main goal is to store whatever we need in order 

to minimize processing at query time 

• Text search has unique requirements, which leads 
to unique data structures 

• Most common data structure is inverted index 
– A forward index stores the terms for each document 

• As seen in the back of a book 

– An inverted index stores the documents for each term 
• Similar to a concordance

!4



A Shakespeare Concordance
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Indexes and Ranking

• Indexes are designed to support search 
– faster response time, supports updates 

• Text search engines use a particular form of 
search: ranking 
– documents are retrieved in sorted order according 

to a score computing using the document 
representation, the query, and a ranking algorithm 

• What is a reasonable abstract model for 
ranking? 
– This will allow us to discuss indexes without 

deciding the details of the retrieval model
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Abstract Model of Ranking
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More Concrete Model
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Inverted Index

• Each index term is associated with an 
inverted list 
– Contains lists of documents, or lists of word 

occurrences in documents, and other 
information 

– Each entry is called a posting 
– The part of the posting that refers to a specific 

document or location is called a pointer 
– Each document in the collection is given a 

unique number 
– Lists are usually document-ordered (sorted by 

document number)
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Example “Collection”
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Simple Inverted  
Index
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Inverted Index 
with counts 

!
•   supports better              

ranking algorithms 
!
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Inverted Index 
with positions 

!
• supports  

proximity matches
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Proximity Matches

• Matching phrases or words within a 
window 
– e.g., "tropical fish", or “find tropical 

within 5 words of fish” 

• Word positions in inverted lists make 
these types of query features efficient 
– e.g.,
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Fields and Extents

• Document structure is useful in search 
– field restrictions 
• e.g., date, from:, etc. 

– some fields more important 
• e.g., title 

• Options: 
– separate inverted lists for each field type 
– add information about fields to postings 
– use extent lists
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Extent Lists

• An extent is a contiguous region of a 
document 
– represent extents using word positions 
– inverted list records all extents for a given 

field type 
– e.g.,

extent list
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Other Issues

• Precomputed scores in inverted list 
– e.g., list for “fish” [(1:3.6), (3:2.2)], where 

3.6 is total feature value for document 1 
– improves speed but reduces flexibility 

• Score-ordered lists 
– query processing engine can focus only on the 

top part of each inverted list, where the 
highest-scoring documents are recorded 

– very efficient for single-word queries
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Index Compression

Managing index size efficiently
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Compression

• Inverted lists are very large 
– e.g., 25-50% of collection for TREC collections 

using Indri search engine 
– Much higher if n-grams are indexed 

• Compression of indexes saves disk and/or 
memory space 
– Typically have to decompress lists to use them 
– Best compression techniques have good 

compression ratios and are easy to decompress 
• Lossless compression – no information lost
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Compression

• Basic idea: Common data elements use 
short codes while uncommon data 
elements use longer codes 
– Example: coding numbers 
!
• number sequence: 
!
• possible encoding: 
!
• encode 0 using a single 0: 
!
• only 10 bits, but...
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Compression Example

• Ambiguous encoding – not clear how to 
decode 

• another decoding: 
!
• which represents: 
!
• use unambiguous code: 
!
• which gives:
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Compression and Entropy

• Entropy measures “randomness” 
– Inverse of compressability 
!
!
!

– Log2: measured in bits 
– Upper bound: log n 
– Example curve for binomial

H (X) ≡ − p(X = xi
i=1

n

∑ ) log2 p(X = xi )
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Compression and Entropy

• Entropy bounds compression rate 
– Theorem: H(X) ≤ E[ |encoded(X)| ] 
– Recall: H(X) ≤ log(n)           
– n is the size of the domain of X 

• Standard binary encoding of integers optimizes 
for the worst case where choice of numbers is 
completely unpredictable 

• It turns out, we can do better. At best: 
– H(X) ≤ E[ |encoded(X)| ] < H(X) + 1 
– Bound achieved by Huffman codes
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Delta Encoding

• Word count data is good candidate for 
compression 
–many small numbers and few larger numbers 
– encode small numbers with small codes 

• Document numbers are less predictable 
– but differences between numbers in an 

ordered list are smaller and more predictable 
• Delta encoding: 
– encoding differences between document 

numbers (d-gaps) 
–makes the posting list more compressible
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Delta Encoding

• Inverted list (without counts) 
!

• Differences between adjacent numbers 
!

• Differences for a high-frequency word  are 
easier to compress, e.g., 
!

• Differences for a low-frequency word are large, 
e.g.,
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Bit-Aligned Codes

• Breaks between encoded numbers can 
occur after any bit position 

• Unary code 
– Encode k by k 1s followed by 0 
– 0 at end makes code unambiguous
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Unary and Binary Codes

• Unary is very efficient for small numbers 
such as 0 and 1, but quickly becomes very 
expensive 
– 1023 can be represented in 10 binary bits, but 

requires 1024 bits in unary 

• Binary is more efficient for large numbers, 
but it may be ambiguous
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Elias-γ Code
• More efficient when smaller numbers are more common 
• Can handle very large integers 
• To encode a number k, compute 
!
!

• kd is number of binary digits, encoded in unary
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Elias-δ Code

• Elias-γ code uses no more bits than unary, 
many fewer for k > 2 
– 1023 takes 19 bits instead of 1024 bits using 

unary 

• In general, takes 2⌊log2k⌋+1 bits 
• To improve coding of large numbers, use 

Elias-δ code 
– Instead of encoding kd in unary, we encode kd + 1 

using Elias-γ 
– Takes approximately 2 log2 log2 k + log2 k bits
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Elias-δ Code

• Split kd into: 

!
!
– encode kdd in unary, kdr in binary, and kr in binary
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Byte-Aligned Codes

• Variable-length bit encodings can be a 
problem on processors that process bytes 

• v-byte is a popular byte-aligned code 
– Similar to Unicode UTF-8 

• Shortest v-byte code is 1 byte 
• Numbers are 1 to 4 bytes, with high bit 1 

in the last byte, 0 otherwise
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V-Byte Encoding
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V-Byte Encoder 
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V-Byte Decoder
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Compression Example

• Consider inverted list with counts & 
positions — (doc, count, positions) 
!

• Delta encode document numbers and 
positions: 
!

• Compress using v-byte:
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Skipping 

• Search involves comparison of inverted 
lists of different lengths 
– Finding a particular doc is very inefficient 
– “Skipping” ahead to check document numbers 

is much better 
– Compression makes this difficult 
• Variable size, only d-gaps stored 

• Skip pointers are additional data structure 
to support skipping
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Skip Pointers

• A skip pointer (d, p) contains a document 
number d and a byte (or bit) position p 
– Means there is an inverted list posting that 

starts at position p, and the posting before it 
was for document d

skip pointers
Inverted list
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Skip Pointers

• Example 
– Inverted list of doc numbers 

!
– D-gaps 

!
– Skip pointers
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Auxiliary Structures

• Inverted lists often stored together in a single file 
for efficiency 
– Inverted file 

• Vocabulary or lexicon 
– Contains a lookup table from index terms to the byte 

offset of the inverted list in the inverted file 
– Either hash table in memory or B-tree for larger 

vocabularies 
• Term statistics stored at start of inverted lists 
• Collection statistics stored in separate file 
• For very large indexes, distributed filesystems are 

used instead.
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Index Construction

Algorithms for indexing
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Index Construction

• Simple in-memory indexer
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Merging

• Merging addresses limited memory problem 
– Build the inverted list structure until memory 

runs out 
– Then write the partial index to disk, start 

making a new one 
– At the end of this process, the disk is filled 

with many partial indexes, which are merged 

• Partial lists must be designed so they can 
be merged in small pieces 
– e.g., storing in alphabetical order
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Merging
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Distributed Indexing

• Distributed processing driven by need to 
index and analyze huge amounts of data 
(i.e., the Web) 

• Large numbers of inexpensive servers used 
rather than larger, more expensive 
machines 

• MapReduce is a distributed programming 
tool designed for indexing and analysis 
tasks
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Example

• Given a large text file that contains data 
about credit card transactions 
– Each line of the file contains a credit card 

number and an amount of money 
– Determine the number of unique credit card 

numbers 
• Could use hash table – memory problems 
– counting is simple with sorted file 

• Similar with distributed approach 
– sorting and placement are crucial
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MapReduce
• Distributed programming framework that 

focuses on data placement and distribution 
• Mapper 
– Generally, transforms a list of items into another 

list of items of the same length 

• Reducer 
– Transforms a list of items into a single item 
– Definitions not so strict in terms of number of 

outputs 

• Many mapper and reducer tasks on a cluster of 
machines
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MapReduce
• Basic process 
– Map stage which transforms data records into 

pairs, each with a key and a value 
– Shuffle uses a hash function so that all pairs with 

the same key end up next to each other and on the 
same machine 

– Reduce stage processes records in batches, where 
all pairs with the same key are processed at the 
same time 

• Idempotence of Mapper and Reducer provides 
fault tolerance 
– multiple operations on same input gives same 

output
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MapReduce
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Example

!50



Indexing Example
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Result Merging

• Index merging is a good strategy for 
handling updates when they come in large 
batches 

• For small updates this is very inefficient 
– instead, create separate index for new 

documents, merge results from both searches 
– could be in-memory, fast to update and search 

• Deletions handled using delete list 
– Modifications done by putting old version on 

delete list, adding new version to new 
documents index
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Query Processing

Using the index to search efficiently
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Query Processing

• Document-at-a-time 
– Calculates complete scores for documents by 

processing all term lists, one document at a 
time 

• Term-at-a-time 
– Accumulates scores for documents by 

processing term lists one at a time 
• Both approaches have optimization 

techniques that significantly reduce time 
required to generate scores
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Document-At-A-Time
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Pseudocode Function Descriptions
• getCurrentDocument()  

– Returns the document number of the current posting of the 
inverted list. 

• skipForwardToDocument(d) 
– Moves forward in the inverted list until getCurrentDocument() <= d. 

This function may read to the end of the list. 
• movePastDocument(d) 

– Moves forward in the inverted list until getCurrentDocument() < d. 
•  moveToNextDocument() 

– Moves to the next document in the list.  Equivalent to 
movePastDocument(getCurrentDocument()). 

• getNextAccumulator(d) 
–  returns the first document number d' >= d that has already has an 

accumulator. 
•  removeAccumulatorsBetween(a, b) 

– Removes all accumulators for documents numbers between a and b. 
Ad will be removed iff a < d < b.
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Document-At-A-Time
Get best k documents for query Q from index I, with query score function g() and 
document score function f(). Process one document at a time.
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Term-At-A-Time
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Term-At-A-Time
Get best k documents for query Q from index I, with query score function g() 
and document score function f(). Process one term at a time.
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Optimization Techniques

• Term-at-a-time uses more memory for 
accumulators, but accesses disk more 
efficiently 

• Two classes of optimization 
– Read less data from inverted lists 
• e.g., skip lists 
• better for simple feature functions 

– Calculate scores for fewer documents 
• e.g., conjunctive processing 
• better for complex feature functions
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Conjunctive  
Term-at-a-Time
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Conjunctive  
Document-at-a-Time
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Threshold Methods

• Threshold methods use the number of top-
ranked documents needed (k) to optimize 
query processing 
– for most applications, k is small 

• For any query, there is a minimum score that 
each document needs to reach before it can 
be shown to the user 
– score of the kth-highest scoring document 
– gives threshold τ 
– optimization methods estimate τ′ to ignore 

documents
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Threshold Methods
• Example: find the top 2 documents 

– Query term weights: [0.7, 0.1, 0.2] 
– Doc term weights are between 0 and 1 
– Ranker uses dot product of query and doc weights 

• Doc 1 term weights: [0.3, 0.4, 0.5] 
– Score: 0.3*0.7 + 0.4*0.1 + 0.5*0.2 = 0.35 

• Doc 2 term weights: [0.5, 0.1, 0.1] 
– Score: 0.5*0.7 + 0.1*0.1 + 0.1*0.2 = 0.38 

• Doc 3 term weights: [0.01, 1, 1] 
– Score: 0.01*0.7 +1*0.1 + 1*0.2 = 0.307 
– We know from the first term that doc 3 can’t possibly get a 

high enough score to beat docs 1 and 2 
– We can discard the document after looking at just one 

term
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Threshold Methods

• For document-at-a-time processing, use score 
of lowest-ranked document so far for τ′  
– for term-at-a-time, have to use kth-largest score in 

the accumulator table 

• MaxScore method compares the maximum 
score that remaining documents could have to 
τ′ 
– uses the maximum score observed in term posting 

lists to estimate the best possible document score 
– safe optimization in that ranking will be the same 

without optimization (cf. A* search)
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MaxScore Example

• Indexer computes µtree  

– maximum score any document got for term “tree” 
• Assume k =3, τ′ is lowest score for entire query after 

first three docs 
• Likely that τ ′ > µtree because of additional terms  

– τ ′ is the score of a document that contains both query terms 
• Can safely skip over all gray postings, which have 

scores < µtree
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Other Approaches

• Early termination of query processing 
– ignore high-frequency word lists in term-at-a-

time 
– ignore documents at end of lists in doc-at-a-time 
– unsafe optimization 

• List ordering 
– order inverted lists by quality metric (e.g., 

PageRank) or by partial score 
–makes unsafe (and fast) optimizations more 

likely to produce good documents
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Structured Queries

• Query language can support specification 
of complex features 
– similar to SQL for database systems 
– query translator converts the user’s input 

into the structured query representation 
– Galago query language is the example used 

here 
– e.g., Galago query:
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Evaluation Tree for Structured Query
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Distributed Evaluation

• Basic process 
– All queries sent to a director machine 
– Director then sends messages to many index 

servers 
– Each index server does some portion of the query 

processing 
– Director organizes the results and returns them to 

the user 
• Two main approaches 
– Document distribution 

• by far the most popular 
– Term distribution
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Distributed Evaluation

• Document distribution 
– each index server acts as a search engine for 

a small fraction of the total collection 
– director sends a copy of the query to each of 

the index servers, each of which returns the 
top-k results 

– results are merged into a single ranked list by 
the director 

• Collection statistics should be shared for 
effective ranking
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Distributed Evaluation
• Term distribution 
– Single index is built for the whole cluster of 

machines 
– Each inverted list in that index is then assigned to 

one index server 
• in most cases the data to process a query is not stored 

on a single machine 

– One of the index servers is chosen to process the 
query 
• usually the one holding the longest inverted list 

– Other index servers send information to that server 
– Final results sent to director
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Caching

• Query distributions similar to Zipf 
– About ½ each day are unique, but some are very 

popular 
• Caching can significantly improve 

effectiveness 
– Cache popular query results 
– Cache common inverted lists 

• Inverted list caching can help with unique 
queries 

• Cache must be refreshed to prevent stale 
data
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